Finding community structure in very large networks
نویسندگان
چکیده
منابع مشابه
Finding community structure in very large networks.
The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time...
متن کاملFinding local community structure in networks.
Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This ...
متن کاملFinding Community Structure in Music Genres Networks
Complex networks have shown to be promising mechanisms to represent several aspects of nature, since their topological and structural features help in the understanding of relations, properties and intrinsic characteristics of the data. In this context, we propose to build music networks in order to find community structures of music genres. Our main contributions are twofold: 1) Define a total...
متن کاملFinding and evaluating community structure in networks.
We propose and study a set of algorithms for discovering community structure in networks-natural divisions of network nodes into densely connected subgroups. Our algorithms all share two definitive features: first, they involve iterative removal of edges from the network to split it into communities, the edges removed being identified using any one of a number of possible "betweenness" measures...
متن کاملFinding All Maximal Cliques in Very Large Social Networks
The detection of communities in social networks is a challenging task. A rigorous way to model communities considers maximal cliques, that is, maximal subgraphs in which each pair of nodes is connected by an edge. State-of-the-art strategies for finding maximal cliques in very large networks decompose the network in blocks and then perform a distributed computation. These approaches exhibit a t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2004
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.70.066111